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Abstract
We investigate random interlacements on Z%, d > 3. This model, recently
introduced in [8], corresponds to a Poisson cloud on the space of doubly infinite
trajectories modulo time shift tending to infinity at positive and negative infinite
times. A nonnegative parameter ¥ measures how many trajectories enter the
picture. Our main interest lies in the percolative properties of the vacant set left
by random interlacements at level u. We show that for all 4 > 3 the vacant set
at level u percolates when u is small. This solves an open problem of [8], where
this fact has only been established when d > 7. It also completes the proof of

the nondegeneracy in all dimensions d > 3 of the critical parameter u 4 of [8].
© 2008 Wiley Periodicals, Inc.

Introduction

The present work investigates the model of random interlacements on Z¢9,
d > 3, introduced in [8]. Informally this is a translation-invariant model that
describes the microscopic structure left in the bulk by a random walk on a large
discrete torus or on a discrete cylinder with base a large discrete torus when the
walk 1s run for a time proportional to the number of sites in the torus or to the
square of the number of sites in the base (cf. [7, 11]. The main purpose of this ar-
ticle 1s to answer an open question of [8] and show that for small u > 0 the vacant

set at level u in Z2 left by random interlacements does percolate. In [8] this had

only been proved to be the case when d > 7. The present work shows that small
dimensions behave 1n a similar fashion.

We now describe the model somewhat informally and refer to Section 1 for pre-
cise definitions. Random interlacements consist of a cloud of paths constituting a
Poisson point process on the space of doubly infinite Z4 -valued trajectories mod-
ulo time shift tending to infinity at positive and negative infinite times. A nonnega-
tive parameter u plays in essence the role of a multiplicative factor of the intensity
measure of this Poisson point process. In a standard fashion one constructs on the
same space (£2,.4, P) (see (1.9) below), the whole family Z%, u > 0, of random
interlacements at level u > 0 (ctf. (1.16)). They are the traces on 72 of the cloud
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of trajectories modulo time shift “up to level u.” The random subsets Z* increase
with u and for ¥ > 0O are infinite random connected subsets of Z¢, ergodic under

space translations (cf. [8, theorem 2.1]. The complement of Z* in 74 is denoted
by V*. It is the so-called vacant set at level u (cf. (1.17)). As shown in (2.16) of

[8], the law O, on {0, 1}Zd of the indicator function of V¥ is characterized by the
property
(0.1) QOulY, = 1forall x € K| = exp{—u cap(K)} for all finite sets K C 74

where Yy, x € Z¢, stand for the canonical coordinates on {0, 1}Zd and cap(K) for
the capacity of K (ct. (1.9)).

Our main focus here lies in the percolative properties of V*. For this purpose it
1S convenient to consider the nonincreasing function

(0.2) n(u) = P[0 belongs to an infinite connected component of V¥], u > 0.

With corollary 2.3 of [8], one knows that the [P-almost sure presence and absence
of an infinite connected component (i.e.,“infinite cluster”) in V¥ are equivalent to
n(u) > 0 and n(u) = 0, respectively. One then introduces the critical parameter

(0.3) ux = Inf{u > 0: n(u) = 0} € [0, oo].
The main results of [8] (cf. theorems 3.5 and 4.3) show that
(0.4) Ux <00 ford >3 and usx >0 ford > 7;

1.e., V¥ does not percolate for large u, and at least when d > 7, percolates for
small . The main result in the present article (cf. Theorem 3.4) shows that

(0.5) ux >0 ford > 3,

and even that V¥ percolates in planes for small #. This solves an open problem of
[8] and proves that 1, 1s nondegenerate in all dimensions. Let us also mention that
with theorem 1.1 and corollary 1.2 of [10], it 1s known when n(u) > 0, i.e., when
V¥ percolates, the infinite cluster 1s almost surely unique and that r is continuous
on [0, ux] and has at most one point of discontinuity at 1. It is at present unknown
whether V¥* percolates or not.

Let us give some comments on the proof of (0.5). The difficulty in proving
(0.5) stems from the fact that the usual Peierls-type arguments that require a good
enough exponential bound on P[Z¥ O A] in terms of the cardinality |A| for A
finite in Z?2 (viewed as a subset of 74 ) so far only work when d > 18; see [8, re-
mark 2.5(3)]. In fact, when d = 3, there 1s no such exponential bound; cf. (1.20).
This difficulty 1s closely related to the long-range dependence present in the model:
as shown in (1.68) of [8], the correlation of the events {x € V¥} and {y € V¥} de-
cays as ¢(u)|x—y|~@~2) when |x —y| tends to infinity. To bypass this obstruction
we employ a renormalization technique that 1s different but has a similar flavor to
the methods of [8, sec. 3]. To prove (0.5) we show (cft. (3.25) and (3.26)) that for
small u the probability that a x-circuit of Z% N Z? surrounds the origin is smaller
than 1 (we refer to the beginning of Section 1 for the definition of x-paths). For
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this purpose we develop estimates showing that for small u the presence of long
x-paths in Z% N Z? is unlikely. We consider a sequence of functions

gn(u) “=""P-probability that 7% N Z* contains a *-path from a given
(0.6) block of size L, to the complement of its L ,-neighborhood
forn > 0
(we refer to (2.7) and (2.8) for the precise expression), with the aim of proving that
for small u, g, (u) decays with n at least as an inverse power of L, . The sequence

of length scales L, n > 0, in (0.6) grows rapidly, and (see (2.1), (2.2)):

(0.7) Ln~ L8, n>0witha = .
We derive a recurrence relation bounding g, +1(U#n+1) in terms of g, (u,) along a
decreasing sequence u, such that (cf. (2.67))

|
log L,

-1
(0.8) Uptl = (1 - ) u, forn > 0.

As a result of (0.7) this sequence converges to a positive value uo > 0. The
recurrence relation 1s based on Proposition 2.1 and hinges on the *“sprinkling tech-
nique” of [8], where more independent paths are thrown in, with the purpose of
dominating long-range interactions present in the model. In the proof of theo-
rem 4.3 1n [8], when showing u, > 0 for d > 7, these long-range interactions
could be bounded 1n a rather primitive way, with not too dire consequences thanks
to the assumption d > 7. An important contribution of the present work is that we
are able to control these interactions even in the case of small dimensions; see also
Remark 2.3(2). The result of the renormalization scheme (cf. Theorem 2.5) is that
for suitable dimension-dependent constants ¢, ¢’, and ¢”, if we can find

log Lg)? _
(0.9) Lo=c and up= c’(—oig—(-;_-_-%-)—-— such that  go(uo) < ¢’ Ly 124,
0
then
(0.10) foralln > 0, gn(u,) < c”L;(l"’z“).

This procedure essentially reduces the proof of (0.5) to checking (0.9). This step
1s carried out in Theorem 3.1, where 1t 1s shown that

/ 2
(0.11) ~lim quo(uo) = 0 forall p > 0 with ug = M.
Lo—00 L. 0 —2

The two-dimensional character of the event in the right-hand side of (0.6) plays
a crucial role here. Replacing Z? with Z¢ would still lead to a rather similar recur-
rence relation between g, +1(Un+1) and g, (u,). However, one could not initiate
the induction in this modified setup (ct. Remark 2.6; (0.11) would be replaced with
limy,, 00 go(ko) = 1). Interestingly, the proof of (0.11) relies on arguments rem-
iniscent of some of the steps that appear in the derivation of lower bounds on the

disconnection times of discrete cylinders by random walks; see section 2 of [1] or
section 5 of [9].
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We will now describe the organization of this paper.

In Section 1 we introduce some notation and recall useful facts concerning ran-
dom interlacements.

In Section 2 we develop the renormalization scheme. The induction step is
carried out 1n Proposition 2.1. The application of the induction step to the proof
of the fact that (0.10) 1s a consequence of (0.9) appears in Proposition 2.4 and
Theorem 2.5.

In Section 3 we prove (0.11) in Theorem 3.1. This enables us to initiate the
induction and yields (0.10) for a decreasing sequence with positive limit #5,. AsS
a consequence, we show 1n Theorem 3.4 that for small ¥ > 0O, P-almost surely
V¥ N Z? percolates, which in particular yields (0.5).

Finally, let us explain the convention we use for constants. Throughout the text,
¢ and ¢’ denote positive constants that depend solely on d, with values changing
from place to place. The numbered constants cg, ¢y, ... are fixed and refer to the

value at their first appearance in the text. Dependence of constants on additional
parameters appears in the notation.

1 Notation and Some Facts about Random Interlacements

The main purpose of this section is to introduce additional notation and recall
various usetul facts concerning random interlacements.

We let || and |- |0, respectively, stand for the Euclidean and the £°°-distance on
Z2. Unless explicitly mentioned we assume d > 3 throughout this paper. We say
that x, y in Z¢ are neighbors, respectively *-neighbors, if |x — y| = 1, respectively
X — yleo = 1. By finite path, respectively finite *-path, we mean a sequence
X0, X1,...,XN IN 7% N > 0, such that x; and x; 41 are neighbors, respectively
x-neighbors, for each 0 < i < N. We also sometimes write path, or *-path, in
place of finite path, or finite *-path, when this causes no confusion. With B(x, r)
and S (x, r) we denote the closed |- |oo-ball and | - | oo -sphere with radius r > 0 and
center x € Z%. For A, B subsets of Z%, we write A + B for the set of elements
x+ ywithxinAdand yin B,and d(A, B) = inf{|{x — y|eoc : x € A, y € B} for
the mutual £°°-distance between A and B. When A is a singleton {x}, we write
d(x, B) for simplicity. The notation U € Z¢ means that U is a finite subset of

74 . Given U a subset of Z¢, we denote by |U| the cardinality of U, with dU the
boundary of U and 0, U the interior boundary of U :

U ={xeU":qy el, |x—y| =1}

1.1
(1-1) OintllU ={x €U :3qy € U®, |[x—y| =1}

The canonical basis of R4 is denoted by (€i)1<i<d»and we tacitly identify Z* with
Z.e1 + Zey C 74

We write W, for the space of nearest-neighbor Z¢ -valued trajectories defined
for nonnegative times and tending to infinity. We denote by W, X,,, n > 0, and
Fn,n = 0, the canonical o-algebra, the canonical process, and canonical filtration
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on Wy. We let 6,, n > 0, stand for the canonical shift on W... Since d > 3, a
simple random walk on Z¢ is transient and for x € Z¢ we denote with P, the
restriction of the canonical law of a simple random walk starting at x to the set
W4, which has full measure. We write E, for the corresponding expectation. We

also define P, = ), .za p(x)Px when p is a measure on Z¢, and write E, for

the corresponding expectation. Given U C Z4, we let Hy, Hy, and Ty stand for
the respective entrance time, hitting time of U, and exit time from U :

Hy =inf{n >0: X, e U}, Hy =inf{n>1:X, € U},

(1.2) .
Iy =infin >0: X, ¢ U}.

In case of a singleton U = {x}, we write H, or H, for simplicity.
We denote with g( -, -) the Green function of the walk

(1.3) g(x,y) = ) Px[Xn=y]. x,yez?

n=>0

which 1s symmetric in its two variables, and g(y) = g(0, y) so that g(x,y) =

g(y — x), due to translation invariance. Given K @ Z<% we write ex for the
equilibrium measure of K and cap(K) for the capacity of K, so that

Px[ﬁK = o0] forx € K
0 forx ¢ K,

(1.5) cap(K) = ex (2%) = )  Px[Hk = oq]
xek

It 1s straightforward to see from (1.5) that the capacity is subadditive in the sense

that cap(K U K’) < cap(K) + cap(K’) for K, K’ finite subsets of Z¢ . Further, the
probability of entering K can be expressed as

(1.4) ek (x) =

(1.6) Px[Hg < ool = ) g(x,y)ex(y) forx ez
yeK
One also has the bounds (see, e.g., (1.9) of [8]):
1.7) 2 _yek &(x,¥) < P[Hy < oo] < > _yek 8§(x, ¥)

SupzeK(ZyeK g(z, y) illszK(ZyeK g(z,y))

for x in Z¢, from which we can infer with the help of classical bounds on the
Green function (cf. [5, p. 31]) that

(1.8) cL?2 < cap(B(0,L)) <c'L%2 forL > 1.
p

To introduce random interlacements, we need some further objects. We de-
note by W the space of doubly infinite nearest-neighbor Z¢ -valued trajectories,
which tend to infinity at positive and negative infinite times, and with W* the
space of equivalence classes of trajectories in W modulo time shift. The canonical
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projection from W onto W™ is denoted by #*. We endow W with its canoni-
cal o-algebra generated by the canonical coordinates X,, n € Z, and W™ with
W* = {4 C W* : (n*)"1(4) € W)}, the largest o-algebra on W* for which
7 (W, W) - (W*, W?¥*) is measurable.

We will now describe the space (€2, A, P) where random interlacements are
defined. We consider the space of point measures on W* x R4 :

Q= {0 =1 8uru,) With W}, 1;) € W* x Ry fori > 0and
(1.9) 20
w(Wg x [0,u]) < oo forany K & 74, u > O},

where for K € Z9 , Wf{k C W™ is the set of trajectories modulo time shift that
enter K:

(1.10) We =a"(Wkg) and Wg ={we W :forsomen € Z, X, (w) € K}.

We endow 2 with the o-algebra A generated by the evaluation maps w —
w(D), where D runs over the product o-algebra W* x B(R..). We denote with
[P the probability on (£2,.4), which is the Poisson point measure with intensity
v(dw™)du, giving finite mass to the sets Wg x [0, u], for K & 7%, u > 0, where

v is the unique o-finite measure on (W*, W*) such that for any K € Z¢ (cf. [8,
theorem 1.1]:
(1.11) ]lWAﬂ;VZJT*OQK,

with Qg the finite measure on ng’ the subset of Wi of trajectories that enter K

for the first time at time O such that for A, B € W4, x € Z2 (see (1.4) for the
notation):

(1.12) OQk[(X—n)ns0 € A4, Xo = x, (Xp)n>0 € B] =
Py[A | Hx = oolek (x) Px[B].

Given K €@ Z%, u > (0, one further defines on (€2, .A) the random point process
with values in the set of finite point measures on (W,., W..):

(1.13)  pku@) =) Swryrt+Lwrews<uy foro =) 8qr ).

i>0 i >0

where (w*)®* stands for the trajectory in W that follows step by step w* € Wy
from the time it first enters K. One then knows from proposition 1.3 of [8] that for

K € Z%:
MK . 18 a Poisson point process on (W4, W)

(1.14) with intensity measure u P,

where the notation introduced above (1.2) is used. When 0 < u’ < u and K € Z<4,
one can define ug ., (w) for w € €2, in analogy to (1.13), simply replacing the
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inequality u; < u by the condition ¥’ < u; < u in the formula for pug ,(w). One

then finds that forO < u’ < u and K & 79

MWK uw .y and ug ., are independent Poisson point processes on
(1.15) (W4, W4) with respective intensity measures (1 — u’) P, and
/
u PEK'

Given w € (2, the interlacement at level ¥ > 0 1s the subset of 7.8

" (w) = U range(w; ) ifw = ZS(w,?“,uf)

Ui <u 1 >0 a

= ) wd,
Ke€Z4 wesupp ui,u(w)
where for w* € W, range(w™) = w(Z), for any w € W, with ™ (w) = w¥,

and the notation supp ik 4 (w) refers to the support of the point measure (g 5, (w).
The vacant set at level u 1s then defined as

(1.16)

(1.17) V¥ (w) = Z% \ T*(w) forw e , u > 0.
One then finds (see (1.54) of [8]) that
(1.18) Z"(w)N K = U w(N)N K forK€Z% u>0,weS,

w €supp LK ,u (W)
and 1t follows with (1.14) that for u > O,

(1.19) P[V* D K] = exp{—ucap(K)} forall K € Z¢,

a property that leads to the characterization by (0.1) of the law @, on {0, I}Zd
of the random subset V¥ of Z%: see remark 2.2(2) of [8]. As mentioned 1n the
introduction, (), 1s ergodic under spatial translations (ct. theorem 2.1 of [8]) and

foru > 0, 7% (w) 1s P-a.s. an infinite connected subset of 7.2 (cf. corollary 2.3 of
[8]). Intuitively it can be thought of as a “random fabric.”

Remark 1.1. Since our principal objective is to prove that when u > 0 is small V¥

percolates, it is important to point out that (0, does not dominate any product of
nondegenerate 1.1.d. Bernoulli variables. Indeed, one knows from remark 2.5(2) of
[8] that for u > O and L > c(u) (see (0.1) below for the notation):

P[Z¥ D B0, L)] = Oyu[Yx = 0 forall x € B(0, L)]
> C exp{---—ch"""""2 log L}.

This shows that the probability that V¥ N B(0, L) = & is rather “fat.” In particular,
the law Q. of the indicator function of V¥ cannot stochastically dominate (see [6,
pp. 71-74]), the law of 1.i.d. nondegenerate Bernoulli variables indexed by 74
Note that when d = 3, the same argument even proves that the law of the indicator
function of V¥ N Z# cannot stochastically dominate the law of i.i.d. nondegenerate
Bernoulli variables indexed by Z?. This rather high probability of absence of V¥
in large boxes makes it difficult to prove that V¥ percolates for small # > 0, with

(1.20)
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a strategy based on dynamical or static renormalization in the spirit of chapter 7
in [3].
Incidentally, note that with (0.1) and (1.8) one also finds

(1.21) P[V¥ 2 B(0,L)] = Qu[Yx = 1 forall x € B(0, L)] > exp{—c L9472},

and the probability that V¥ covers B(0, L) is rather “fat” as well, just as we con-

clude above that Q, 1s not stochastically dominated by the law of nondegenerate
i.i.d. Bernoulli variables indexed by Z¢.

2 The Induction Step

In this section we develop a renormalization scheme that aims to show that the
sequence of probabilities g, (1,,) that Z%7 N Z* contains a *-path between a given
block of side length of order L, and the complement of its L,-neighborhood
tends to 0. The sequence of length scales L,, n > 0, grows rapidly to infinity;
ctf. (2.2), whereas u,, n > 0, is a decreasing sequence of levels tending to Uoo > O;
ct. (2.67). The heart of the matter in this section is the derivation of a recurrence
relation enabling the control of ¢, +1 (U, +1) in terms of g, (u,); cf. (2.65). For this
purpose we use a “sprinkling technique”: trajectories of the interlacement with lev-
els in (4,41, un} are used to dominate the long-range interactions in the problem
and restore some independence; see (2.61).

The main result of this section is Theorem 2.5. It reduces the task of proving
a quantitative decay to zero of the sequence g, (u,) to the question of being able
to 1nitiate the recurrence; see (0.11). Most of the work in the derivation of Theo-
rem 2.5 1S carried out in Proposition 2.1 and Proposition 2.4. We first need some
notation.

We 1ntroduce a sequence of length scales as follows. We set

— 1
(2..].) d = ma

and given Lo > 1, define by induction

We then introduce for each n a collection of pairwise disjoint d -dimensional boxes

covering Z?, where we recall the convention introduced below (1.1). The index set
of labels of boxes at level n is

(2.3) I, ={m=(,i):i e€Z* forn >0,
and to eachm = (n,i1) € I,, we attach the d-dimensional boxes
24)  Cm = ([~Ln, Ln)% +2Lsi) N 2%,

25)  Cn= L] Cmr = ([=3Ln,3Ln)" + 2Lni) N 24,
m'el,:d(C,, Cn)<l
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So for each n > 0, the boxes C,,, m € I,, are pairwise disjoint and their union

covers Z?*. As for Cp, it is the union of C,, and the £°°-neighboring boxes of C,,
at level n.

Note that one has the following “hierarchical” property: given m € I, 1, the

trace of C,, on Z? is partitioned by the respective traces on Z¢ of the boxes at level
n contained in C,,;:

(2.6) Cp NZ?% = U Chy NZ?* forn>0andm € Iny1.

m,EIn :Cﬂzl SCWI

Indeed, using the fact that £,, is odd (cf. (2.2)), one simply writes

[—Ln+1, Lnt1) = U kLy, (k4 2)L,)
k odd, —¢,, <k<¥,

— U ([_’Lna Ly) +€Ln),

Leven,—€,, <l<{,

and 1nserts this identity “coordinatewise” into (2.4). Given u > 0, n > 0, and
m € I,, one defines the event

(2.7) B* = there is a *-path from Cy, t0 dip Cy, in Z% N Z2

(we refer to the beginning of Section 1 for the notation). One also defines the
probability

(2.8) gn(u) = P[B,,] where m € I, is arbitrary,

and we have used the translation invariance of Q,; see (0.1).

As already mentioned, we aim at deriving a bound of g, +1(#n+1) in terms of
gdn(Uy) along certain decreasing sequences u, satisfying uoo = lim, u, > 0. With
this objective in mind, it 1s convenient to introduce for n > 0, the collections K
and /C, of labels of boxes at level n contained in C,,, where m = (n+1,0) € 1,11,
(1.e., Cyy, 1s the box at level n + 1 containing the origin):

(2.9) o _ M € Inim’ = (n,i") where i’ = (i, i})
‘ : with max(|i1], |i5]) = Q%j‘
={m' €I, : Cpy N OinCm # T},
— m' € Iy : m’ = (I”l,f,) where [” = (li"lé)
(2.10) K2 = {with max(|i1], |i5]) = €n

A key ingredient of the renormalization scheme comes from the following:

PROPOSITION 2.1 (d > 3) For Lo = ¢, alln =0, and

~1
Co
(2.11) 0<u < (1 + Eﬂ“z) u,
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2 s
Cmy 12 Jint Cm N Z*

FIGURE 2.1. An illustration of the event B¥ with a x-path in Z% N Z?

one has
| | _ . Y, d—2
(2.12) Gn+1(W) < c1€2(gn(w)* +u'L;? + e c2@—1)La ™),

PROOF: Weconsidern > 0,0 <u’ <u,andm = (n+1,0) € 1,11, as above
(2.9). Observe that any x-path in Z? from C,, to Oy 5m necessarily meets some
Cm, with m1 1n K1 and some Cp,, with m3 in K, and is neither contained in Eml
nor 5,7,2 (see Figure 2.1), so that with a rough counting argument
(2.13) gn+1(') < cty sup P[Bj; N By ],

mi,ms

where the supremum runs over mj in Ky and m», in 5. Given such m; and mo,
we write

(2.14) V =Cm, UChm,,

and introduce the decomposition (in the notation of (1.13)):

(2.15) KVu = 1,1 + (1,2 + 12,1 + 12,2,
where for i, j distinctin {1, 2} we have set

Mi,j = ﬂ{XOGEmf » 4 Cm <OO}MV’u’
(2.16) 1 /

i, i = {X()Ggmf , H.._mj moo}/'LV,u

Similarly, when py,,r and @y, y (see (1.15) above) play the role of wy ,, one
obtains the 1dentities (with hopefully obvious notation):

(2.17) Wy = My g+ 1o+ U5 g + 1.
(2.18) MVau'w = 11 + M0+ Mo + U35,
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together with

(2.19) Mij =pi; +pi; forl<i,j=<2.
In view of (1.15) we also see that

(2.20) w; ;> pi ;1 <i,j <2,areindependent Poisson point processes on W...

Roughly speaking the possible dependence between BY% and B,’;‘;z on the right-

hand side of (2.13) originates from the contribution of Mﬁ,z + py g (see (2.17)),

when one considers the trace on V' N Z2 of the trajectories in the support of fLy 4.
In essence our strategy is to exhibit some ‘“domination” of the trace on V N Z4
of trajectories in the support of /JL’1,2 + /“‘,2,1 in terms of the corresponding trace
of trajectories in the support of ©i, + 15 , and “correction terms” when u is

sufficiently bigger than u’. This is the sprinkling technique, and it will produce a

decoupling and a natural control of g,41(1’) in terms of g, (u)? thanks to (2.19)
and (2.20).

We now introduce the £°°-neighborhood of size [L,,4+1/10] of V = C), U 5m2:

L
(2.21) U=1zeZ%:dz V)< ’1’6“

This set is the union of two disjoint boxes that are translates of [—R, R)¢, with
R = 3L, +[L;,+1/10], and the £°°-norm of the vector translating one to the other
box 1s at least L4 1.

For a trajectory in W, the times Ry, k > 1, of successive returns to V', and Dy,
k > 1, of successive departures from U are defined as (see (1.2) for the notation)

Ry = Hy, Dy =Ty o0r, + Ry,
Riyy1 = R100p, + Dy, Dgyy=Dyobp, + Dy fork =1,

sothat 0 < R1 <D < --- <Ry <Dy <--- < ox%.

To control the dependence between the events in the right-hand side of (2.13),
we consider r > 2 and write

(2.22)

(2.23) Wip+ Mo = D Pp+D.
2<b<r
where
(2.24) Py = LR <co=Ry4,} W12+ H5 ) foré >1

(note that p] = 0, since (1] 5, + U3 ;)-a.s.,, Ry = 0,and Rz < 00), and

(2.25) P = 1R, <ocot(H] 2+ 15 1)

(0 will be treated as a correction term; see (2.30) and (2.61) below). As as result of
(2.20) we see that

(2.26) Pp, 2 < £ <r,p, U1, and uj , are independent Poisson point
| processes on W, .
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We denote by & é the intensity measure of /sz and by £ the intensity measure of

0. From the analogues of (2.16) and (1.14) with u’ in place of u, we infer that

(2.27) §p = U Pe, [E,Rp <00 =Ryy1,-],2<L <,
and that
(2.28) £ =u'Py, [E,Rrs1 < 00,-],

Whel‘e E e {XO = le ] 6”12 < OO} U {XO S CMQa ngﬂl < OO}'

We first bound the total mass £(W..) of £. This is performed in an analogous

fashion to (3.23)—(3.25) of [8]. With (1.6), (1.8), and classical bounds on the Green
function (cf. [3], p. 31), we find that

C
(2.29) sup Py|Hy < o0] < diz .
xelU®¢ En

Discarding the event E 1n (2.28) and applying the strong Markov property at times
Dr, Dr-m]_, v .o g Dl, \W & ﬁnd that

- cz ) @22
(2.30) E(W,) < cu’Lﬁ“z(Ediz) <" cchu'L{¢—2)(A-ar),
n

where we used the subadditivity property of the capacity (see (1.5) below), and the
right-hand inequality of (1.8) when bounding cap(V); see (2.14).

We then turn our attention to the point measures p’e. We introduce the set of
finite paths (see the beginning of Section 1 for the definition)

(231) T = {w — (U)(i))()s_iEN finite path, w(O) c V,
w(N)eoU,andw(i) e U for0O <i < N}.

Given £ > 1, we define the map ¢, from {R; < co = Ry} € W into 7¢ such
that

(2.32) w — ¢p(w) = (wy, ..., wy)

with wk() — (XRk—F*(w))OE*SDk (W)—Rx (w) for1 < K < L.

The next lemma yields a control on the probability that the walk hits y € V at
its entrance in V when it starts in 0U U 0i U .

LEMMA 2.2

(2.33) sup  P[Hy < o0, Xg, = y] < —5—
zeaUuaimU Ln-}—l

PROOF: From the inclusion V' C U, one deduces the identity
(2.34) ey (y) = Pey, |Hy < o0, Xy, = y] forallyelV.

This “sweeping” identity can be seen as the consequence of (1.46) of [8] for the
Intensity measures of the Poisson point processes under consideration there. Defin-
ing for y € V the nonnegative harmonic function on V°

%”(Z) — PZ[HV < OQ, XHV — y]a
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one finds with the left-hand inequality of (1.8) and (2.34) that

2.35 e > cL%72 inf Y(z).
( ) V(y) — n-+1 ZelaimU W( )

With the Harnack inequality (cf. [5, p. 42]) and a covering argument of dU U 0y, U

by finitely many balls in V¢ with radius ¢L, 4+ and centers in dintU, one knows
that

2.36 su 7)) <c inf Z).
(2.36) ZeaUU%imUW( ) ZEaUuaimUW( )

Inserting this inequality in (2.35) yields for y € V

ey (y) = cL87%  sup  P,[Hy < oo, Xg, = y].
ZeaUuamlU

and hence (2.33). []

For 2 < { < r, we can view ,02z In (2.24) as a point process on {Ry < 0o =
Ryg4 1} (€ W, ) and then introduce

(2.37) o, the image of p, under ¢,.
Thus with (2.26) we find that

(2.38) Eé’ 2 <t =r,0p, /*‘,:t,la and M’z,z are independent Poisson point
processes.

We denote by 'é'g the intensity of ,'5'é for2 < £ < r. In view of (2.27) we see that
forwl,...,wg inT,

?é(wl,...,wg) — u,PeV [E, Re < OQ = Rﬂ+1:

(2.39)
(XRy+)o<<Dr—R, = Wi(-), 1 <k <{].

We will now prove with the help of Lemma 2.2 that for2 < £ < r,

¢—1
(2.40) E) < cau’' L8 “2( gd___z) 2y [(XDo<<1y, € 1%,
n

where ey stands for the normalized equilibrium measure of V.

1
cap(V)

(2.41) ey = ey .
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Indeed, observe that for wy, ..., wg In7, in view of (2.39), by discarding the event
£ and using the strong Markov property, we find that

A

u' Eey, | Rg < 00, (XRy+)o<<Dp—Ry = wWe(+), 1 <k <,

PXR£ [(X*)O:E*ETU = wy (- )]]

- u,EeV [Dﬂml < OQ, (XRk-I--)O:‘;'*ﬁkaRk — wk(')a I < k < f,

(242) EXDE.—--l [HV < 00, PXHV [(X*)O:S*ETU — we(‘)]]]

(2.33) _
< u'Pey[Re—1 <00, (XRiiJos<Dip—Ry = we(+). 1 <k < {]

C
Ld......z PEV [(X)O."‘E <Ty — wﬂ( )]
n-+1
‘. : £—1 £
induction C | |
= u,( d-—Z) I—[ Pev [(X-)Oﬁ-ﬁ_TU — wk(')]-

Claim (2.40) now follows by bounding cap (V') with (1.8) and the subadditive prop-
erty below (1.5) and using (2.41).

We can also view 1(g,=c0}(4] ; + K3 ,) as a Poisson point process on {R; <
oo = Ra} (€ W) (note that Ry = 0, u7 | + u3 ,-a.s. in view of the analogue of
(2.16) for u7 j). We then introduce the Poisson point process on 7 :

(2.43) p7 the image of I(r,—ooy (T ; + K3 ,) under ¢y,

and denote by "é’;" 1ts intensity measure (a measure on 7). In view of (1.15), (2.18),
and the analogue of (2.16) for 1 ;» we find that

Pt

’f;'ik(w) — (u _u,)Pev[(X-)Os*gTU — w(‘), Hy OQTU — OO]

(2.44)
forw € 7.

As aresult of (2.29), we see that for Ly > c,

2.45 inf P,[Hy = oco] > 1.
( ) xedU x[ v ].........2

and hence with (1.8) and the strong Markov property applied at time Ty to the
probability in (2.44), we deduce that

(2.46) EF > ce(u —u)L4T2p5, [(X)o<-<Ty € -]

The upper bounds (2.40) and the lower bound (2.46) will be our main instrument
when seeking to dominate the trace on ¥V N Z? of trajectories in the support of

pmy 5 + p5 o in terms of the trace on Z# N V of trajectories in the support of
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“T,l + ;u;!z. With this goal in mind, we introduce the random subsets of V' N Z4:

Z;; =Vn 7= N ( U range(w)) fori = 1,2,
‘wesupp(u; ;)

fé — V M Zz (M ( U I‘ange(wl) J--- U range(we))
(Wy,...,W¢) ESUPP P
for2 <€ <r,

T=VNZ*nN ( U range(w)).

w esupp p

Note that with (2.38), it follows that

(2.47)

(2.48) 1,1, 5,2, f’é 2 < ¢ < r,and T are independent under P.
Moreover, 1 view of (2.17), (2.23), and (2.37), one has the identity
(2.49) ™ nvnz? =11, v5,u( |J ) uT
2<b<r

In a stmilar fashion to (2.47), we can define

I =Vn Z* N ( U range(w)) fori =1, 2,

. 24
W ESuUpp U; ;

=V NZ*nN ( U range(w)),

w €supp Py

(2.50)

Taking (2.20) and (2.43) into account, we see that

2.51)  I*, Iy, T, I, 2 <£<r, and 7 are independent under P,
and further that

(2.52) T* C I, U5,

As we now explain, we will construct a coupling of 7,,2 <€ <r,and T*. We
consider on some auxiliary probability space independent Poisson variables, N,
2 <{¢<r,and N g*, 1 < £ < r, with respective intensities (cf. (2.40) and (2.46))

Ce £—1
/E mC4u/Lgm2( ) . 2 < f < r, and
(2.53)

as well as 1.1.d. 7 -valued variables yf, 1 <€ <r,i > 1, independent of the N,
2 < £ < r, Ne*, 1 < £ < r, with common distribution Pz, [(X.)o<.<T;, € -]
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We then define the point processes:

2.54) T = 8, ¢ ~ g onT* with2 <£ <r,
(2:54) 1 Z (VY= 1Yot (= 1y Y (i —1)t) -7 ="

1<i<N,
and
(2.55) ;= » &8¢ onTwithl <{<r.

We thus find that

I’é, 2 < £ < r, are independent Poisson point processes with
. . | , or [ 240
(2.56)  respective intensity measures A, Pz, [(X.)o<.<1, € 1% ( =

Eg) and

FE“, 1 < £ < r, are independent Poisson point processes with

(2.57) ... o | , (246) | ~
identical intensity measure A, Pz, [(X.)o<.<T, € -] (< +£7).

In view of (2.56) and (2.57), we can thus construct on some probability space
(l?,]:, Q) acoupling of gy, N;, Iy, 2 <€ <r,pj,and N/,T;,1 <€ =<r,so
that

(2.58) pp<Iyfor2<f<r and ) T;<p}

1<bé<r
(for instance, in view of the inequality in the last line of (2.56) we construct the
law of p, by thinning I'y, and in view of the inequality in the last line of (2.57),

we construct the laws of p; by adding an independent 7 -valued Poisson point
process).

From the definition of f’é in (2.47) and Z™ in (2.50), it then follows that on the
event ( o<y, AN, = r N,}, one has

(2.54)
2.58

- (258)
) I; € vNnZ?

2<if<r 1<i<N,

C VNZ*n ( U ( U range(yf)))

2=€=r 1<j=sN{ '

(2.59)

(2.55)
(2.58)

C VNZ*n ( U range(w)) =T,

W ESUpp P

Hence the coupling we constructed on (X, F, Q) leads to the bound

(2.60) Q(I* > | :”fg) >1- Y Q(N} <rN)).

2<b<r 2<b<r
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This inequality plays a pivotal role in the sprinkling technique we employ in

order to control interactions. Indeed, we can bound the probability in the right-
hand side of (2.13) as follows:

P[BY N BY ]

2.49) =
2 ]P’[there are x-paths from C,;, to 0inCy,, and from Cy,,

to 8funt&wm:z In Ii,l U If?,,z U (Uzsesr fé) U f]

(2.51)
(2.60)

< IP’[there are *x-paths from C,,, to Biméml and from C,,,
t0 OintCrmy inZ7 UL, , UT* UT]
- Z Q(N, <r Ny)
(2.61) 2=b=r

(2.20)
(2.52)

< P [there 1s a *-path from C,,, to 3im5m1 In Ii,l U Iik,l]
P [there 18 a *-path from C,,, to 8int5m2 n I:/z,z U If{’z]

+PZ# 2]+ Y QNS <rNy

2<l<r
(2.8)
219 L, = . ,
< gn)?*+EWL) + >  O(N; <rNp.
2<b<r

where we have used the fact that (Z; ; UZ*.) N Com ;=0 forl <i # j <2,

to decouple probabilities after the second inequality and bounded P[Z # @] by
Plp # 0] < g(W+) in the last inequality.

We will now bound the last term in the last line of (2.61). To this effect we
ensure that (see (2.53))

(2.62) Ay = 4rd, for2 <{<r

by imposing Lo > ¢ and

f‘2

d—2
en

(with the choice (2.66) below, this will yield (2.11)).
As result of (2.62) we thus find that for2 < £ < r,

u!

(2.63) u—u > cg

" *
Q(N£*<)"‘Né)<Q Ng*<%—€“ + O Né>.......£.
(2.64) - -2 o
< )* (2.53) S (u—u')LE—2
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where we have dominated N é by a Poisson variable of intensity A, /4r thanks to
(2.62), and used classical exponential bounds on the tail of Poisson variables in the
second 1nequality.

Coming back to (2.13), we see that when Lo > ¢ forn > 0 and r > 2, when
(2.63) holds, one finds by collecting (2.30), (2.61), and (2.64) that

(2.65)  gni1(W) < cl2(gn)? +u'ciLlé—D0~ar) | re~ 7z UL )

We can now choose
3 @

and with this choice (2.65) i1s more than enough to yield the claim (2.12). L]
Remark 2.3.

(1) Itis clear from the above proof that by adjusting the choice of r in (2.66),
we can produce an arbitrary negative power of L, in place of L “ in the right-hand

side of (2.12) (of course, we adjust constants there as well). The present choice will
suffice for our purposes.

(2) The inequality (2.65) and the auxiliary condition (2.63) play a similar role
to (3.52) and (3.45) of [8] (which pertain to the control of crossings of the vacant
set and are later applied to increasing sequences u, that remain bounded).

Let us give some comments. Roughly speakmg, In [8] one dominates the trace
on the single box sz of trajectories in “1 5 + ,u,z , In terms of traces on sz of

{45 5. In the present work we must handle both boxes at once when bounding the
probablhty in the rlght -hand side of (2. 13) We dominate the simultaneous traces

on Cyy, N Z? and Cpy, N Z2 of L] 2t W5 1 in terms of the independent traces of

u};on Cmy NZ?and of u3 , on Gy, N 72,

Whereas in [8] one specn‘ies the parameter r relatively late, depending on the
successive choices of L and ug, in order to cope with the increasing sequences u,,
and the indeterminacy of ug, in the present context r is simply fixed by the choice
(2.66). However, the last term of (2.65) is specific to the present control of a Pois-
son point process affecting two boxes in terms of two independent Poisson point

processes concerning each respective box. Quite naturally this term deteriorates
when the intensity A in (2.53) becomes small.

We will now see how one can propagate controls on the probabilities g, (1)
(ct. (2.8)) and choose sequences u, that decrease not too fast so that u,, =
limu, > O but still sufficiently fast so that u, —u, 4 is large enough. The last term
in the right-hand side of (2.12) suggests picking u, 1 sufficiently smaller than u,,
in (2.67) below, and not trying to saturate (2.11) (with u,+1 and u,, respectively,
playing the roles of u’ and u).

Given ug in (0, 1} and Lo > 1, we define the sequence u,, n > 0, via

1 ~1
(2.67) Upt1 = (1 +- ) U, torn > 0.
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We now derive a crucial propagation of certain controls from one scale to the
next. We refer to Proposition 2.1 for notation.

PROPOSITION 2.4 (d > 3) When Lo > c and O < ug < 1, if for some n > 0,
(2.68a) co(Un —Uny1)LE72% > 2log L.

(2.68b) Ay d:ifclgpzth(un) = L;:l,

then (2.68a) and (2.68b) hold true with n + 1 in place of n.

PROOF: Observe that when Lg > c,

(%_6_7) 1 CO
= (1 " log Ln)“""'l . (1 T ed-Z)””“’

n

and hence with (2.12) where we set u = u, and u’ = u, 41, noting that u,; <
Ug < 1, we find that

£ ’ . _
(269) an+1 5 ( 72'1"1) aﬁ 4+ C(gn-}-len)z(l‘;z_z 4 e"“"CZ(uM“un-l—l)Lf{ 2)'
n

We will now check (2.68a) at level n + 1. For Lo > ¢, we find that

(2.2)
l <logLy <logLljiy < (1+a)logLy +c <2loglLy

for all £ > 0, and therefore when Lo > ¢’,

(2.70) 442
= c2(uUp _un+1)Lg Z n4
(2.68a) 1]
]
> - log Lny1£272 > 210og Lyt1.
This shows that (2.68a) holds at level n + 1.
We now check (2.68b) at level n + 1. We note that
ntl < ¢ L — p— C’Lﬁ2 and E,H_lﬁn < CL%la—}-az.

L Le

n

We thus see that when Lo = ¢, (2.69) and the induction hypothesis yield that

2 2 _ .~ . 2__2 (2.1)
Ln+1 2.2)
—1] Ta—1 —1
= Ln—l—lCLn = Ln+1'

Lp

(
—1 6a—1
Ln+1 CLn
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This shows (2.68b) at level n 4+ 1 and completes the proof of Proposition 2.4. L[]

With Proposition 2.4, obtaining a control on the sequence of probabilities g, (1,,)
1S reduced to 1nitiating the recurrence 1n (2.68). We collect the results we will need

for the next section in the following theorem (see Proposition 2.1 and (2.67) for the
notation).

THEOREM 2.5 (d = 3) When Lo > c7, if for the choice

4 —(d—
(2.71) uo = — (log Lo)2Ly@ ™
2
it holds that
(2.72) Clﬂqu(uo) = Lal,
then
(2.73) c1€nqn(Uoo) < c185qn(un) < L, foralln =0,

where U o C*-l:ifuo X |01 + 1/log L,)~! e (0,1).

PROOF: We see that for Lo > c¢7 with the choice in (2.71), 0 < ug < 1, and
also that

U , C u
1 Ld....;z > 2 0

co(Ug — ul)Lg"z = (o L‘g“"z = 2log Ly.

log Lg O = log L
Claim (2.73) now follows from Proposition 2.4, and the positivity of 1 i a con-
sequence of the inequality L, > L(()l'l'a) (ct. (2.2)). L]

Remark 2.6.

(1) It should be realized that initiating the induction scheme we have devel-
oped in this section, 1.e., checking (2.72) for Ly > c¢7 and ug as in (2.71), is not
a mere formality. To 1llustrate the point, observe that one can replace 7% with
7% in (2.3) and (2.7); 1.e., consider instead boxes of size of order L, filling the
whole space Z¢ and the event that such a box is connected by a *-path in Z¥ to the
complement of the neighborhood of size of order L, corresponding to (2.5) in this
modified setup.

Then small vanations of the arguments used in Propositions 2.1 and 2.4, with the
modified choice a = 1/100d in (2.1), will yield a similar result to Theorem 2.5,

with possibly different constants and the multiplicative factor £2 replaced with

{f%(d'"l) In (2.73) (this modification originates from the fact that a similar change

takes place in (2.13) and (2.65)).

However, one cannot 1nitiate the induction scheme one obtains in this new setup.
Indeed, the corresponding probabilities g, (u,) tend to 1 as n goes to infinity, as
can be seen trom the fact that P-a.s., for large n, the box C,, at level n containing
the origin meets Z¥>> C 7%7 and any trajectory in the interlacement entering C,,
also meets ;¢ Cyp,.



PERCOLATION FOR THE VACANT SET OF RANDOM INTERLACEMENTS 8351

The above observation stresses the importance of being able to check the initial

hypothesis of the induction and of the presence of Z# in the definitions (2.3) and
(2.7).

(2) Building upon Remark 2.3(1), the arguments employed in Proposition 2.4
and Theorem 2.5 also show with the appropriate adjustment of constants that given
M > 1, when Lo > ¢(M), if for the choice ug = ¢’(M)(log Lg)? La-(d--z) one
has c”(M)E% qo(ug) < L"O"M, then torall n > 0,

" (M) gn(uco) < " (M)agn(un) < LM,
with u, as in (2.67) and Ueo = ug X | |,,59(1 + 1/log Lp).

3 Percolation of the Vacant Set for Small u

In this section we derive the main result of this paper and show that for all d > 3,
the vacant set at level u percolates in Z# when u is small enough; see Theorem 3.4.
The main task 1s to initiate the induction scheme developed in the previous section.
This 1s carried out in Theorem 3.1 and relies on arguments that share a common
flavor with some of the steps in the derivation of lower bounds for disconnection
times of discrete cylinders with large boxes; cf. [1, sec. 2] and [9, sec. 5].

In this section we consider as in (2.71),

4 —(d —
(3.1) Lo>c7 and ug = E—-—--(log Lo)zLo(d 2).
2

The following result is sufficient to show that we can find Ly > ¢7 such that
(2.72) holds true. We refer to (2.8) for the notation.

THEOREM 3.1 (d = 3)

(3.2) lim Lfqgo(uo) =0 forall p> 0.

L()-—>OO

PROOF: We introduce the event

(3.3) Cr, = there is a self-avoiding *-path in ([0,2L¢) x [0,6L() X
{0Y¢~2) N T%0 starting in {0} X [0,6L¢) x {0}¥~2 and ending
in {2Lo — 1} x [0, 6L¢) x {0}¢—2

Consider m € g (ct. (2.3)), the label of the box at level O containing the oﬁgigin.
On the event B,,° (cf. (2.7)), we can find a self-avoiding *-path from 0d;, Cy, to

dCp, in (Cy \ Crn) N I*0 N Z2. One can extract from this path a self-avoiding
x-path linking the long sides of one of the four overlapping rectangles isometric to
[0,2L¢) % [0,6L¢) x {0}¢~2 and covering (Cp, \ Cm) N Z?; see Figure 3.1. As
a consequence of (1.14) with ¥ = uy, or, alternatively, of the fact that the law of
T%0 is invariant under the discrete isometries of Z<, we find that

(3.4) qgo(up) < 4P [CL()]~
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FIGURE 3.1. An illustration of the fact that when B, occurs, the trace
of Z%0 on one of the four overlapping rectangles bordering C,, N Z? and
isometric to [0, 2Lg) x [0, 6Lo) x {0}¢ ™2 contains a self-avoiding *-path
between the long sides of the rectangle.

For large Lo we then introduce the smaller length scale
(3.5) L = 1000{L g exp{—(log Lo)l/S}],

as well as the squares in the strip U = [0,2L¢) X Z X {O}d —2,

L

C, ) = kL 0,L)2 x {02y
k.0 el-l-ﬂloooé’z-i—[ )“ x {0} C

(3.6)
2L L
with0 <k <K =|=22| and €| <K = |10*=2
L L
For k, £ as above, we also consider the box
(3.7) Br ¢ = Cg g x |0, L)72 (2 Ck.t),
and the nearly concentric subsquare of Cy ¢4,
L 41, 6L
3.8 C.,=kL e_--— — 0Y4—2,
(3-8) kL €17 £ 1000 2"*'[10 10] < 10}

We denote by sr; and m, the projections from 7% onto Z.ey and Ze,, respec-
tively. The next lemma is close in spirit to the geometric lemma of [1, pp. 332-
334], albeit simpler due to the two-dimensional situation considered here.

LEMMA 3.2 For large Ly on Cr,, for each 0 < k < K there exists £j with
14i| < K’ such that

L . L
(3.9) |71 (Z%° N Cre,)| = 7 o |72 (20 N Cr g, )| > T
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6Lgl— | | | )

Ob———f——— 2141

/R

kL (k + 1)L

FIGURE 3.2. An illustration of the boxes Cy ¢, and C, n

PROOF: Consider w € Cyr ,; we can find a self-avoiding *-path x;, 0 <i < N,
as 1n (3.3), such that in addition |x; —Xj|cc = 1 implies |i —j| = 1 whenever0 < i,
J =< N, and only x¢ and x5 belong to the sides of the strip U. Denote by § =
tx;i : 0 <1 < N} therange of the path, and with 7 op the connected component in
U \ S “above the path,” 1.e., containing [0, 2L ) X [6 L, o0). With the Jordan curve
theorem for polygons (cf. [2, p. 68], one sees that [0,2L¢) X (—o0,—=1] C U\ S
1s disjoint from 7 op. When L 1s large, it thus follows that

Top whent{ =K' —1,

| /
forO =k <X Cht S\ rope whent = —(K'—1).

Tracking the relative fraction of points of 7op in C; , as £ varies, one sees “by
continuity” that for some |[{;| < K’,

Cre, NTop #< and Cre, N(Top)® # 2.

This implies that C]i g, Meets S as well. By definition of S, we can then find a *-
path from C; ¢, 1O dintCr ¢, - Either the - or ma-projection of this path contains

at least --f-i‘- points and claim (3.9) follows; see Figure 3.2. L]

As a result of the above lemma, we see that for large Lo,

(3.10) Cro < | ) AYR U Al
(£r)
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where (£;) runs over all maps k € [0, K) — £, € (—K', K’), with K, K’ defined
in (3.6), and for each (£;) we have the set

(k) | ' y Ll|. K

Fh = e Q: e |0, K “oNcC > — 3| > —

(3.11) A; ;a) {r [ ) @ |7 ( rr)| 4}IH 2}

fori =1, 2.
With a rough counting argument, we thus find that for large L

C %Q log(c ELQ)

(3.12) PlCL,] < e sup P[Age"‘)],

(Lr),i=1,2

where in the above supremum (£;) runs over the same collection as in (3.10).

We now bound P [A(lek)] uniformly in (£;). An analogous bound for P [Ag”]k)] 1S
derived in a similar fashion. We thus consider some (£, ) as above and for0 < £k <
K, denote with & the collection of “vertical segments™ Z of the form i} 1(v) M
Ck,e, forv € [kL,(k +1)L) = m1(Cg g, ). We also write S = | Jg< < g Sk for
the collection of vertical segments in all C p,, 0 < k < K. The next step is the
tollowing (see (1.2) for the notation):

LLEMMA 3.3 For large L, one has

' C8 logL
(3.13) sup £ [exp{m—-—-——————-—-—-—- legy }] < 2.
xeZ4 i (logLo/L) L 2 WHr <o}

PROOF: With KhaSminskii’s lemma (cf. [4]) as well as (2.46) of [1], it suffices
to prove that for large L,

Lo L
3.14 sup £, [ 1 ] < clo ( )
( ) x(__:Zpd J;S \Hy<ooj 5 L logL

With the help of (1.7) and classical bounds on the Green function (cf. [5, p. 31],
we see that forany O < k£ < K and x € Ci ¢, , one has

L
Y Py[H; < o] 5_2 if d > 4,
IES}C {=1
L
] + log(L/E) .
< fd = 3.
- ; logL 1
Hence we see that
L
(3.15) sup  Ex| > T, <o0| < for0 <k < K.
cC logL
PELk Ly I €5y
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Applying once again standard bounds on the Green function and (1.7), we find

def
that for x € C = Uo<k<x Ck.e, » one has

(3.7)

Z Px [Hckafk_ < OO] = Z PX[HBk,(:k < OO]
O0<k<K O0<k<K
(3.16) o
< C Z ----L—----—---- < clog -é—o-.
(JL)?~2 L

Lo
1<j<[FY]

Thus for any x € Z¢ applying the strong Markov property we find that

A

sup E [ 1 ]
(3.17) sup Ez| D D Lr<oo)

O<k<K I €5,

< sup Z E, [HC/c,ek < 00, EXHck . [ Z ]1{HI<OO}]]
Z2€C o<k <K kT res,

(3.15)
(3.16) L (Lo)
< c log| — ).

log L L
This proves (3.14) and thus concludes the proof of the lemma. L]

We now resume the task of bounding P [A(le")]. We 1ntroduce the nonnegative
measurable function on Wy

C8 log L
s 1,y |
log(Lo/L) L ;;S HHr(w)=oc)

as well as B = B(0,20L¢g) 2 C for large Lo (see above (3.16) for the notation).
Hence for large L, we find that in the notation of (1.13)

(3.18) ¢(w) =

E[exp{{iBu. #)}] =" exp{uoEeyle? — 1]}

(3.19) (1.8)
(3.13) (3.1)

< expicugcap(B)} < exp{c(log LO)Z}*

Since on .A(le") one has

g C log L
~log(Lo/L) L

(M’B,uoa ¢)
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1t follows that
c log L

P A(ﬁk) < a _
A= expg log(Lo/L) L

With (3.5) we also see that for large L,

Lo + c’(log Lo)?% .

clogLo <logL <c'log Ly,

L
(3.20) ¢ exp{ (log LO)I/B} < "i?" < ¢’ exp{(log Lo)l/B},

L .
log (ig) < c(log Lo)'/3.

As a result, we deduce that for large L

(3.21) sup P[A%)] < exp{—c(log Lg)?/? eloeLo)'"*}
Lk )

A similar bound holds with Agjk) in place of .A(lg"’ ) Coming back to (3.12) we
then see with (3.20) that for large Ly

(3'22) P[CLO] E exp{—-C(lOg L0)2/3e(logL0)1/3},

which 1s more than enough to prove claim (3.2). [

We now come to the main result showing that for small u the vacant set at level
u percolates in planes.

THEOREM 3.4 (d > 3) For small u > 0,

(3.23) P-a.s., V¥ N\ Z? contains an infinite connected component.

PROOF: The argument 1s in essence the same as for the proof of theorem 4.3 of

[8]. With Theorem 3.1 we can pick L¢ > c¢7 such that (2.72) holds and conclude
with Theorem 2.5 that

(3.24) c182qn(Uoo) < L1 forall n > 0 with us € (0, 1].
Thenforng = Oand M = 2L,, — 1 we can write for u < U

[P |0 does not belong to an infinite connected component of V¥ N
(3.25) Z*] < P[Z¥ N B(O,M) N Z? # @] + P[Z% N (Z? \ B(0, M))
contains a x-circuit surrounding 0].

With (0.1) (see also (1.58) of [8]), P[x € V¥] = e %/8(0) ith the notation as
below (1.3). The above expression is thus smaller than

cM2(1 — e"2@) + 3, P[Z* N (Z2 \ B(0, M)) contains
a x-circuit surrounding 0, which passes through a point in
[2Ll’l9 2Lﬂ+1 T l]el]‘

We can cover (2L,,2L,4+1 — 1] e; with the translates of the box C,, at level n
containing the origin by the vectors 2k + 1) L,,e;, 1 <k < £, — 1. A x-circuit
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in Z% N (Z* \ B(0, M)) surrounding O and passing through (2k + 1) L, e; + Cy,
necessarily meets (2k + 1)L, e1 + 0intCri. As a result, the left-hand side of (3.25)
1S smaller than

_ - (3.24)
cM?(1—e™8O) 4 3" 8,ga() = c(LZu+ D LyY) <1

n=>no n=ny,

1If we choose ng large and u < ¢(Lg, ng). This yields a positive u such that

(3.26) P[0 belongs to an infinite component of V¥ N Z?] > 0.

However, (2.6) of [8] shows that the law on {0, 1}Zz of the indicator function
of V¥ N Z? is ergodic under translations. With (3.26) we see that the translation-

Invariant event on {0, l}Zz consisting of configurations for which the set of lo-
cations where the configuration takes the value 1 contains an infinite connected
component, has full measure under this law. Claim (3.23) follows. [

Remark 3.5.

(1) As mentioned in the introduction, the above theorem combined with the
results of [8] completes the proof of the nondegeneracy for all d > 3 of the critical
parameter u, of (0.3). It even proves the nondegeneracy for all d > 3 of the
critical parameter attached (with a straightforward modification of (0.2)—(0.3)) to
the percolation of V¥ N Z2. It is plausible that this critical value is strictly smaller
than u .. However, one may wonder whether it is possible to approximate u 4 from

below by critical values corresponding to percolation of the vacant set in thick
two-dimensional slabs, as in the case of Bernoulli percolation; see [3, p. 148].

(2) With Remark 2.6(2) and a small vanation in the proof of Theorem 3.1
(cf. (3.19) where the definition of ug involves a new constant ¢’ (M) in place of
4/c2), we see that for any M > 1, when Ly > c(M), then

(3.27) C//(M)E%qn (Uoo) < C”(M)E,qun (U,) < L,“;M foralln > O,

with u, asin (2.67) and Uy, = U X Hn;»__o(l + 1/log L,,).
As a direct consequence of this result, (see also (2.1), (2.2), (2.8)), it follows
that for any p > 0, there exists u (o) > 0 such that for u < u(p),

(3.28) lim LPIP[there is a x-path from 0 to S(0, L) in Z% N Z*] = 0.

L—00
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